United Nations Framework Convention on Climate Change

Agenda item 4.1.
Paragraph 23 of the annotated agenda

Digitization of methodologies

Web-based generation of project design documents

CDM EB 100

Bangkok, Thailand, 27 to 31 August 2018

Procedural background

Mandate

- CDM Executive Board workplan 2018
 - Project 256 Digitization of methodologies
 - Progress report: EB100: Info
- Decision 3/CMP.12, para. 9
- At EB 96, the Board decided to proceed with digitization of one methodology (ACM 0002) and to road-test the use of the same.

Progress made: digitalization of ACM0002

- The questionnaire incorporates the logic of:
 - Methodology ACM0002
 - New power plants of types:
 - Hydro, wind, solar, tidal
 - Tools used by the methodology:
 - Tool to calculate emission factor of an electricity system
 - Additionality tool, along with tools on:
 - First-of-its-kind
 - Common practice
 - Investment analysis

Progress made: digitalization of ACM0002 (cont.)

- Capabilities of the digitalized version
 - Presents menu of questions to the user:
 - Text, numeric values, images, documents
 - Data files (Excel files)
 - Based on user inputs:
 - Determines the next questions (branching)
 - Calculates parameters/ factors from data provided
 - Inserts responses, calculated values, tables, equations into the PDD form template
 - Generates PDD in Word file that the user can download

Key issues and proposed solutions

Benefits demonstrated

- Facilitates PDD preparation: user can focus on the technical design of the project without having to go through a large number of documents (methodologies/ tools/ guidelines)
- Improves user experience and efficiency:
 - Data is asked only once, although may be presented in different places in the document/ process
 - Data is validated at input time: avoids erroneous data from entering the process
 - Complex calculations are performed automatically, including use of applicable default values
- Enhances quality, consistency and coherence of the PDD generated

Key issues and proposed solutions (cont.)

Potential benefits of (upon mainstreaming)

- Standardize/ structure data capture: amenable to analysis, can help improve standards
- Facilitate streamline the work of project validation/ assessment;
- Prompt methodologies/tools to be modularized/ restructured/ streamlined/ harmonized/ debugged
- Facilitate maintenance/updating of methodological requirements: single point of update (the user always sees the current version)

Recommendations to the Board

The Board may:

- Take note of this update
- Provide feedback/guidance on the next stage of this work

Subsequent work and timelines

Road-testing the tool with the stakeholders

Thank you!

2014	
Data vintage year Y2	2 (YYYY)
2015	
Data vintage year Y3	3 (YYYY)
2016	
Upload data file	
Select File	
Choose File test_o	data_1.xlsx
Available template: g	grid_data_template.xlsx
Last file: test_data_1	.xlsx <u>♣</u>
Calculated EF_OM	
0.8757 tCO2e/MWh	(method: Simple OM, Option A)
Calculated EF_BM	
	(set of units: CDM included, 10-yr olds not included)
Data error	
No errors found	
Data validation statu	us

Agenda item 4.1.

Calculation of grid emission factor

Electricity system (grid)

Title: Northern grid

Description: New grid old grid clean grid

Data vintage:

Years: 2014, 2015, 2016

Power generation summary

Total installed capacity: 8.985 GW
Non-renewables: 6 GW (67%)
Renewables: 2.985 GW (33%)
Total power generation: 54,106.777 GWh

Non-renewables: 43,621.052 GWh (81%) Renewables: 10,485.725 GWh (19%)

Average capacity factor: 0.6874 Non-renewables: 0.8299 Renewables: 0.4010

Emission factors:

EF_{OM} = 0.8757 tCO2e/MWh (method: Simple OM, Option A)

EF_{BM} = 0.6712 tCO2e/MWh (set of units: CDM included, 10-yr olds not included)

Calculations are summarized in table 1 and table 2 below.

Table 1 Summary of operating-margin emission factor calculation

Year	Power units	Total nom. cap.	Elect. gen. non-fuel	Elect. gen. LCMR	Elect. gen. non-LCMR	Elect. gen. tot.	Emissions tot.	EF_OM
2014	12	2,995	3,302,870	3,302,870	14,340,495	17,643,365	12,275,911	0.856
2015	11	2,995	3,418,654	3,418,654	15,194,706	18,613,360	13,152,108	0.8656
2016	12	2,995	3,764,201	3,764,201	14,085,851	17,850,052	12,772,966	0.9068
Total	-	-	10,485,725	10,485,725	43,621,052	54,106,777	38,200,985	0.8757

Table 2 Summary of build-margin emission factor calculation

Data year: 2016	Power	Total nom.	Elect. gen.	Emissions	EF_BM
	units	cap.			
Fuel-burning units	1	600	4,899,458	4,403,143	0.8987
Non-fuel-burning units	4	495	1,660,369	-	-
Total	5	1,095	6,559,827	4,403,143	0.6712

The data used in calculation, including filled-in default values, are presented in appendix 1.

<u> </u>										
Plant-Unit ID	LCMR	Nom.	Op.	Fuel type	Fuel cons.	Elect. gen.	Fuel	Fuel EF	Conv.	Rem.
		cap.	year				NCV		effi.	
P001-U1	No	50	2014	Coal: anthrac.	169,965	397,718	23.5	94,600	na	
P001-U3,4,5	No	150	2014	Coal: BC briq.	701,154	1,146,971	15.1	87,300	na	
P001-U2	No	50	2014	Oil: diesel oil	86,964	400,033	41.4	72,600	na	
P001-	No	200	2015	Coal: anthrac.	731,526	1,711,770	23.5	94,600	na	
U1,3,4,5										
P001-U2	No	50	2015	Oil: diesel oil	89,656	412,418	41.4	72,600	na	
P001-	No	200	2016	Coal: anthrac.	590,863	1,382,619	23.5	94,600	na	
U1,3,4,5										
P001-U2	No	50	2016	Oil: diesel oil	72,695	334,399	41.4	72,600	na	
P002-U1	No	120	2014	Gas: nat. gas	69,799	710,433	46.5	54,300	na	
P002-U1	No	120	2015	Gas: nat. gas	88,276	898,503	46.5	54,300	na	
P002-U1	No	120	2016	Gas: nat. gas	98,427	1,001,825	46.5	54,300	na	
P003-U1	Yes	40	2014	na	na	204,688	na	na	na	
P003-U1	Yes	40	2015	na	na	209,508	na	na	na	
P003-U1	Yes	40	2016	na	na	204,685	na	na	na	
P004-U1	Yes	90	2014	na	na	330,798 na		na	na	
P004-U1	Yes	90	2015	na	na	345,568	na	na	na	
P004-U1	Yes	90	2016	na	na	336,166	na	na	na	
P005-U1,2	No	230	2014	Coal: coking c.	671,632	1,746,243	24	87,300	na	
P005-U1,2	No	230	2015	Coal: oth. bitu.	846,468	1,824,843	19.9	89,500	na	
P005-U1	No	50	2016	Coal: oth. bitu.	175,844	379,090	19.9	89,500	na	
P005-U2	No	180	2016	Coal: coking c.	441,464	1,147,806	24	87,300	na	
P006-U1	No	800	2014	Coal: lignite	4,850,080	5,422,656	11.5	90,900	na	
P006-U1	No	800	2015	Coal: lignite	5,594,690	6,255,176	11.5	90,900	na	
P006-U1	No	800	2016	Coal: lignite	5,118,970	4,940,654	11.5	90,900	na	
P007-U1	Yes	500	2014	na	na	1,610,980	na	na	na	
P007-U1	Yes	500	2015	na	na	1,769,247	na	na	na	
P007-U1	Yes	500	2016	na	na	2,103,832	na	na	na	
P008-U1	Yes	150	2014	na	na	337,815	na	na	na	
P008-U1	Yes	150	2015	na	na	331,748	na	na	na	
P008-U1	Yes	150	2016	na	na	293,679	na	na	na	
P009-U1	No	600	2014	Coal: anthrac.	1,881,850	4,516,441	22.8	94,600	na	
P009-U1	No	600	2015	Coal: anthrac.	1,704,998	4,091,996	22.8	94,600	na	
P009-U1	No	600	2016	Coal: anthrac.	2,041,441	4,899,458	22.8	94,600	na	
P010-U1	Yes	215	2014	na	na	818,589	na	na	na	
P010-U1	Yes	215	2015	na	na	762,583	na	na	na	
P010-U1	Yes	215	2016	na	na	825,839	na	na	na	
Remarks										

Remarks

A: Column 'fuel_cons': default value used B: Column 'fuel_NCV': default value used C: Column 'fuel_EF': default value used

Calculation of grid emission factor

Electricity system (grid)

Title: Eastern grid

Description: Old grid big grid

Data vintage:

Years: 2014, 2015, 2016

Power generation summary

Total installed capacity: 176.663 GW

 Non-renewables:
 122.685 GW (69%)

 Renewables:
 53.978 GW (31%)

 Total power generation:
 893,055.546 GWh

Non-renewables: 689,117.419 GWh (77%) Renewables: 203,938.127 GWh (23%)

Average capacity factor: 0.5771 Non-renewables: 0.6412 Renewables: 0.4313

Emission factors:

EF_{OM} = 0.7124 tCO2e/MWh (method: Simple OM, Option A)

EF_{BM} = 0.4282 tCO2e/MWh (set of units: CDM not included, 10-yr olds not included)

Calculations are summarized in table 1 and table 2 below.

Table A2 Unit-wise power generation data

Plant-Unit ID	LCMR	Nom.	Op.	Fuel type	Fuel cons.	Elect. gen.	Fuel	Fuel EF	Conv.	Rem.
		cap.	year				NCV		effi.	
P001-U1	No	10	2014	Oil: waste oil	5,216	57,113	50.73	74,630	na	
P001-U1	No	10	2015	Oil: waste oil	5,307	58,105	50.73	74,630	na	
P001-U1	No	10	2016	Oil: waste oil	5,207	57,016	50.73	74,630	na	
P002-U1	Yes	450	2014	na	na	1,595,314	na	na	na	
P002-U1	Yes	450	2015	na	na	1,576,752	na	na	na	
P002-U1	Yes	450	2016	na	na	1,571,208	na	na	na	
P003-U1	No	20	2014	Biomass: oth. b.	36,658	112,917	14.42	101,094	na	
P003-U1	No	20	2015	Biomass: oth. b.	36,884	113,612	14.42	101,094	na	
P003-U1	No	20	2016	Biomass: oth. b.	36,867	113,561	14.42	101,094	na	
P004-U1	No	1,000	2014	Coal: oth. bitu.	1,892,194	5,609,266	25.47	95,632	na	
P004-U1	No	1,000	2015	Coal: oth. bitu.	1,956,957	5,745,870	25.47	95,632	0.415	AD
P004-U1	No	1,000	2016	Coal: oth. bitu.	1,865,461	5,530,018	25.47	95,632	na	
P005-U1	No	400	2014	Coal: sub-bitu.	969,605	2,284,631	18.85	97,581	na	
P005-U1	No	400	2015	Coal: sub-bitu.	953,111	2,245,768	18.85	97,581	na	
P005-U1	No	400	2016	Coal: sub-bitu.	964,442	2,272,467	18.85	97,581	na	
P006-U1	No	1,500	2014	Coal: anthrac.	2,247,865	8,510,231	21.6	96,404	na	В
P006-U1	No	1,500	2015	Coal: anthrac.	2,280,982	8,635,608	27.15	96,404	na	
P006-U1	No	1,500	2016	Coal: anthrac.	2,263,227	8,568,390	27.15	96,404	na	
P007-U1	No	100	2014	Biomass: wood/w	164,953	351,808	7.9	95,000	na	BC
P007-U1	No	100	2015	Biomass: wood/w	166,124	354,305	19.34	112,346	na	
P007-U1	No	100	2016	Biomass: wood/w	161,912	345,322	19.34	112,346	na	
P008-U1	Yes	100	2014	na	na	349,725	na	na	na	
P008-U1	Yes	100	2015	na	na	348,118	na	na	na	
P008-U1	Yes	100	2016	na	na	357,702	na	na	na	
P009-U1	No	200	2014	Coal: BC briq.	503,575	1,143,337	23.42	97,390	na	
P009-U1	No	200	2015	Coal: BC briq.	506,611	1,150,230	23.42	97,390	na	
P009-U1	No	200	2016	Coal: BC briq.	512,119	1,162,736	23.42	97,390	na	
P010-U1	No	750	2014	Biomass: wood/w	956,705	4,344,780	19.44	113,678	na	
P010-U1	No	750	2015	Biomass: wood/w	962,088	4,369,225	19.44	113,678	na	
P010-U1	No	750	2016	Biomass: wood/w	956,843	4,345,408	19.44	113,678	na	
P011-U1	No	500	2014	Biomass: oth. b.	897,686	2,835,400	14.43	101,045	0.788	AD
P011-U1	No	500	2015	Biomass: oth. b.	897,959	2,836,262	14.43	101,045	0.788	AD
P011-U1	No	500	2016	Biomass: oth. b.	898,125	2,861,988	14.43	101,045	na	
P012-U1	No	15	2014	Oil: waste oil	14,337	79,315	49.79	72,688	na	
P012-U1	No	15	2015	Oil: waste oil	14,273	78,964	49.79	72,688	na	
P012-U1	No	15	2016	Oil: waste oil	14,015	77,534	49.79	72,688	na	
P013-U1	No	800	2014	Oil: naphtha	732,777	4,142,869	44.15	73,057	na	
P013-U1	No	800	2015	Oil: naphtha	727,760	4,114,504	44.15	73,057	na	
P013-U1	No	800	2016	Oil: naphtha	726,678	4,108,387	44.15	73,057	na	
P014-U1	No	450	2014	Oil: diesel oil	278,340	2,567,343	42.3	74,847	na	
P014-U1	No	450	2015	Oil: diesel oil	277,635	2,560,833	42.3	74,847	na	
P014-U1	No	450	2016	Oil: diesel oil	281,141	2,593,172	42.3	74,847	na	
P015-U1	No	800	2014	Gas: nat. gas	520,366	4,237,339	47.9	55,499	na	

P110-U1	No	1,000	2016	Coal: anthrac.	2,123,644	5,722,985	26.8	98,042	na	
P111-U1	No	3	2014	Oil: waste oil	1,560	16,868	50.41	73,030	na	
P111-U1	No	3	2015	Oil: waste oil	1,571	16,981	50.41	73,030	na	
P111-U1	No	3	2016	Oil: waste oil	1,559	16,858	50.41	73,030	na	
P112-U1	No	12.5	2014	Gas: nat. gas	6,811	71,202	47.94	56,150	na	
P112-U1	No	12.5	2015	Gas: nat. gas	6,803	71,120	47.94	56,150	na	
P112-U1	No	12.5	2016	Gas: nat. gas	6,843	71,530	47.94	56,150	na	
P113-U1	No	1	2014	Oil: naphtha	1,327	5,208	43.75	73,055	na	
P113-U1	No	1	2015	Oil: naphtha	1,312	5,152	43.75	73,055	na	
P113-U1	No	1	2016	Oil: naphtha	1,350	5,298	43.75	73,055	na	
P114-U1	No	15	2014	Oil: naphtha	9,335	86,817	43.48	71,521	na	
P114-U1	No	15	2015	Oil: naphtha	9,353	86,980	43.48	71,521	na	
P114-U1	No	15	2016	Oil: naphtha	9,495	88,307	43.48	71,521	na	
P115-U1	No	70	2014	Oil: RF oil	45,636	402,394	40.54	77,093	na	
P115-U1	No	70	2015	Oil: RF oil	45,936	405,038 40.54		77,093	na	
P115-U1	No	70	2016	Oil: RF oil	45,636	402,397 40.54		77,093	na	
P116-U1	No	50	2014	Gas: nat. gas	31,976	261,577	47.27	55,809	na	
P116-U1	No	50	2015	Gas: nat. gas	31,685	259,190	47.27	55,809	na	
P116-U1	No	50	2016	Gas: nat. gas	32,268	263,967	47.27	55,809	na	
P117-U1	No	2,250	2014	Coal: lignite	8,410,052	12,788,606	13.72	103,634	na	
P117-U1	No	2,250	2015	Coal: lignite	8,428,559	12,816,748	13.72	103,634	na	
P117-U1	No	2,250	2016	Coal: lignite	8,340,820	12,683,329	13.72	103,634	na	
P118-U1	Yes	375	2014	na	na	1,297,442	na	na	na	
P118-U1	Yes	375	2015	na	na	1,266,444	na	na	na	
P118-U1	Yes	375	2016	na	na	1,296,397	na	na	na	
P119-U1	No	150	2014	Biomass: wood/w	272,580	526,541	19.7	115,421	na	
P119-U1	No	150	2015	Biomass: wood/w	275,543	532,265	19.7	115,421	na	
P119-U1	No	150	2016	Biomass: wood/w	273,197	527,734	19.7	115,421	na	
P120-U1	No	300	2014	Oil: diesel oil	385,481	1,697,087	42.04	73,207	na	
P120-U1	No	300	2015	Oil: diesel oil	384,404	1,692,348	42.04	73,207	na	
P120-U1	No	300	2016	Oil: diesel oil	386,923	1,703,435	42.04	73,207	na	
Remarks										

Remarks

A: Column 'fuel_cons': default value used B: Column 'fuel_NCV': default value used C: Column 'fuel_EF': default value used D: Column 'conv_effi': default value used

plant_ID	latitude	longitude	plant_name	unit_ID	date_commi tech_type	is	_LCMR	is_CDM	nom_cap	pp_yr fuel_type	fuel_cons	elect_gen	fuel_NCV f	uel_EF	conv_effi
P001	34.56456	75.23419	Plant X	U1	25/06/2006 Coal: subcritical	N	О	No	50	2014 Coal: anthracite	169965	397718	23.5	94600	na
P001	34.56456	75.23419	Plant X	U3,4,5	25/06/2006 Coal: subcritical	N	О	No	150	2014 Coal: brown coal briquettes	701154	1146971	15.1	87300	na
P001	34.56456	75.23419	Plant X	U2	25/06/2006 Oil/natural gas: reciprocal g	gas engine N	О	No	50	2014 Oil: gas/ diesel oil	86964	400033	41.4	72600	na
P001	34.56456	75.23419	Plant X	U1,3,4,5	25/06/2006 Coal: subcritical	N	0	No	200	2015 Coal: anthracite	731526	1711770	23.5	94600	na
P001	34.56456	75.23419	Plant X	U2	25/06/2006 Oil/natural gas: reciprocal g	as engine N	0	No	50	2015 Oil: gas/ diesel oil	89656	412418	41.4	72600	na
P001	34.56456	75.23419	Plant X	U1,3,4,5	25/06/2006 Coal: subcritical	N	lo	No	200	2016 Coal: anthracite	590863	1382619	23.5	94600	na
P001	34.56456	75.23419	Plant X	U2	25/06/2006 Oil/natural gas: reciprocal g	as engine N	0	No	50	2016 Oil: gas/ diesel oil	72695	334399	41.4	72600	na
P002	23.45434	71.65349	Plant A	U1	01/01/2009 Cogeneration: gas turbine	N	0	No	120	2014 Gas: natural gas	69799	710433	46.5	54300	na
P002	23.45434	71.65349	Plant A	U1	01/01/2009 Cogeneration: gas turbine	N	0	No	120	2015 Gas: natural gas	88276	898503	46.5	54300	na
P002	23.45434	71.65349	Plant A	U1	01/01/2009 Cogeneration: gas turbine	N	0	No	120	2016 Gas: natural gas	98427	1001825	46.5	54300	na
P003	18.34233	78.43451	Plant B	U1	16/09/2011 Hydro: without reservoir	Ye	es	No	40	2014 na	na	204688	na	na	na
P003	18.34233	78.43451	Plant B	U1	16/09/2011 Hydro: without reservoir	Ye	es	No	40	2015 na	na	209508	na	na	na
P003	18.34233	78.43451	Plant B	U1	16/09/2011 Hydro: without reservoir	Ye	es	No	40	2016 na	na	204685	na	na	na
P004	19.45641	69.43234	Plant Z	U1	24/02/2012 Solar: concentrated solar th	ermal Ye	es	No	90	2014 na	na	330798	na	na	na
P004	19.45641	69.43234	Plant Z	U1	24/02/2012 Solar: concentrated solar th	ermal Ye	es	No	90	2015 na	na	345568	na	na	na
P004	19.45641	69.43234	Plant Z	U1	24/02/2012 Solar: concentrated solar th	ermal Ye	es	No	90	2016 na	na	336166	na	na	na
P005	16.34587	65.33469	Plant W	U1,2	02/05/2002 Coal: subcritical	N	О	No	230	2014 Coal: bituminous: coking coal	671632	1746243	24	87300	na
P005	16.34587	65.33469	Plant W	U1,2	02/05/2002 Coal: subcritical	N	О	No	230	2015 Coal: other bituminous	846468	1824843	19.9	89500	na
P005	16.34587	65.33469	Plant W	U1	02/05/2002 Coal: subcritical	N	О	No	50	2016 Coal: other bituminous	175844	379090	19.9	89500	na
P005	16.34587	65.33469	Plant W	U2	02/05/2002 Coal: subcritical	N	О	No	180	2016 Coal: bituminous: coking coal	441464	1147806	24	87300	na
P006	15.78654	78.44623	Plant V	U1	24/06/2004 Coal: subcritical	N	0	No	800	2014 Coal: lignite	4850080	5422656	11.5	90900	na
P006	15.78654	78.44623	Plant V	U1	24/06/2004 Coal: subcritical	N	0	No	800	2015 Coal: lignite	5594690	6255176	11.5	90900	na
P006	15.78654	78.44623	Plant V	U1	24/06/2004 Coal: subcritical	N	О	No	800	2016 Coal: lignite	5118970	4940654	11.5	90900	na
P007	32.54692	65.43745	Plant C	U1	20/08/2006 Hydro: with reservoir	Ye	es	No	500	2014 na	na	1610980	na	na	na
P007	32.54692	65.43745	Plant C	U1	20/08/2006 Hydro: with reservoir	Ye	es	No	500	2015 na	na	1769247	na	na	na
P007	32.54692	65.43745	Plant C	U1	20/08/2006 Hydro: with reservoir	Ye	es	No	500	2016 na	na	2103832	na	na	na
P008	22.56764	60.56454	Plant D	U1	15/03/2013 Solar: photovoltaic	Ye	es	Yes	150	2014 na	na	337815	na	na	na
P008	22.56764	60.56454	Plant D	U1	15/03/2013 Solar: photovoltaic	Ye	es	Yes	150	2015 na	na	331748	na	na	na
P008	22.56764	60.56454	Plant D	U1	15/03/2013 Solar: photovoltaic	Ye	es	Yes	150	2016 na	na	293679	na	na	na
P009	28.54674	67.33498	Plant E	U1	20/01/2009 Coal: circulating fluidized be	ed combustion N	0	No	600	2014 Coal: anthracite	1881850	4516441	22.8	94600	na
P009	28.54674	67.33498	Plant E	U1	20/01/2009 Coal: circulating fluidized be	ed combustion N	О	No	600	2015 Coal: anthracite	1704998	4091996	22.8	94600	na
P009	28.54674	67.33498	Plant E	U1	20/01/2009 Coal: circulating fluidized be	ed combustion N	О	No	600	2016 Coal: anthracite	2041441	4899458	22.8	94600	na
P010	24.77643	64.78435	Plant F	U1	28/05/2011 Wind	Ye	es	Yes	215	2014 na	na	818589	na	na	na
P010	24.77643	64.78435	Plant F	U1	28/05/2011 Wind	Ye	es	Yes	215	2015 na	na	762583	na	na	na
P010	24.77643	64.78435	Plant F	U1	28/05/2011 Wind	Ye	es	Yes	215	2016 na	na	825839	na	na	na

Title

```
calc_EF
```

Description

calculate EFs and output these


```
Calculation board
1305
         # compute percent lcmr gen
1306
1307
         tot_gen = lcmr_gen + non_lcmr_gen
         percent lcmr gen = lcmr gen / tot gen * 100
1308
         percent lcmr gen = Math.round(percent lcmr gen * 100) / 100
1309
1310
         # compute lcmr and non lcmr em
1311
         lcmr em = 0.0
1312
         for i in [0...DATA.length]
1313
             lc str = DATA[i].is LCMR
1314
             if isFoundIn(lc str, Y LST) and DATA[i].fuel type != "na"
1315
                 a = DATA[i].fuel cons
1316
1317
                 b = DATA[i].fuel NCV
                 c = DATA[i].fuel EF * 1e-6
1318
                 lcmr em = lcmr em + a * b * c
1319
                 lcmr em = Math.round(lcmr em)
1320
```

+ Add variable

Title

calc_EF

Description

calculate EFs and output these

+ Add variable

```
Calculation board
115
   "EF_h": 115000,
       "EF 1": 90900
116
117
     },
118
"fuel": "Coal: anthracite",
   "EF_h": 101000,
120
    "EF 1": 94600
121
122
123
"fuel": "Coal: bituminous: coking coal",
125 "EF_h": 101000,
       "EF 1": 87300
126
127
     },
128
       "fuel": "Coal: sub-bituminous",
129
       "FF h" 100000
130
```


https://app-eff78ffabc4ef4.app.unfccc.org/tools/cdm/UNFCCC_CDM/Pages/Default.aspx