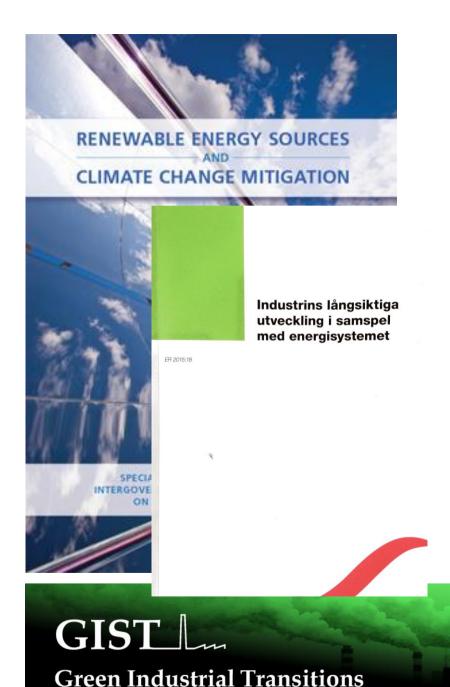


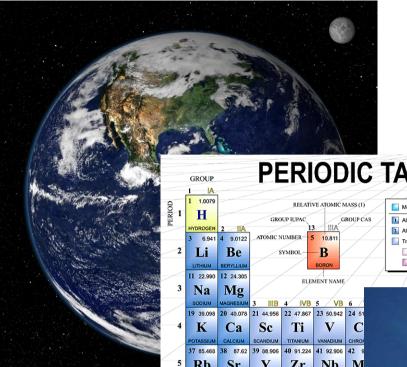
Decarbonising the energy intensive basic materials industry

UNFCCC-TEC Thematic Dialogue, Bonn, 29 mars 2017


LARS J. NILSSON

GHG mitigation option categories for industry and materials

- Service demand reduction (e.g., switching from private to public transport, new product design with longer life)
- Product-Service efficiency (e.g., through car sharing, or higher building occupancy)
- Material efficiency in (a) manufacturing (e.g., through reducing losses, recycling, re-using) and (b) in product design (e.g., through extended product life or light-weight design)
- Energy efficiency (e.g., through furnace insulation, process integration, variable speed drives)
- Emissions efficiency (e.g., from switching to non-fossil fuel electricity supply, renewable feedstock, or CCS)



VARIOUS PUBLICATIONS

- SRREN 2011, Ch 8 on Integration
- Decarbonising industry in Sweden (2012 for EPA roadmap); Electrofuels a review (2013 for FFF); Industry and net-zero emissions 2050, (in Swedish, 2013 for M-Env)
- Decarbonising industry in the EU climate, trade and industrial policy strategies (2015, book chapter)
- Decarbonising the energy intensive basic materials industry through electrification – implications for future EU electricity demand (2016, Energy)
- Industrins långsiktiga utveckling i samspel med energisystemet (ER 2015:18, for SEA)
- Global climate policy and deep decarbonization of energy-intensive industries (2016, Climate Policy)
- Electricity-based plastics and their potential demand for electricity and carbon dioxide (2016, JCP)
- The characteristics of energy intensive processing industries towards deep decarbonization: implications for transitions research (2016, submitted)

With Åhman, Nikoleris, Palm, Lechtenböhmer, Wesseling, Ericsson, Johansson, Coenen, Worrell etc.

(1) Pure Appl. Chem., 73, No. 4, 667-683 (2001)

Relative atomic mass is shown with five significant figures. For elements have no stable

nuclides, the value enclosed in brackets indicates the mass number of the longest-lived

composition, and for these an atomic weight is

Editor: Aditya Vardhan (adivar@nettlinx.com)

ever three such elements (Th, Pa, and U)

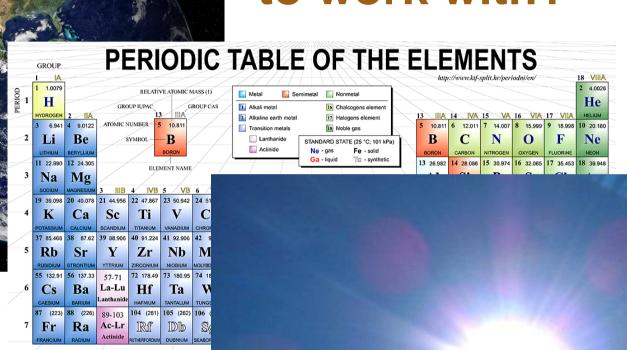
LANTHANIDE

La

LANTHANUM

ACTINIDE

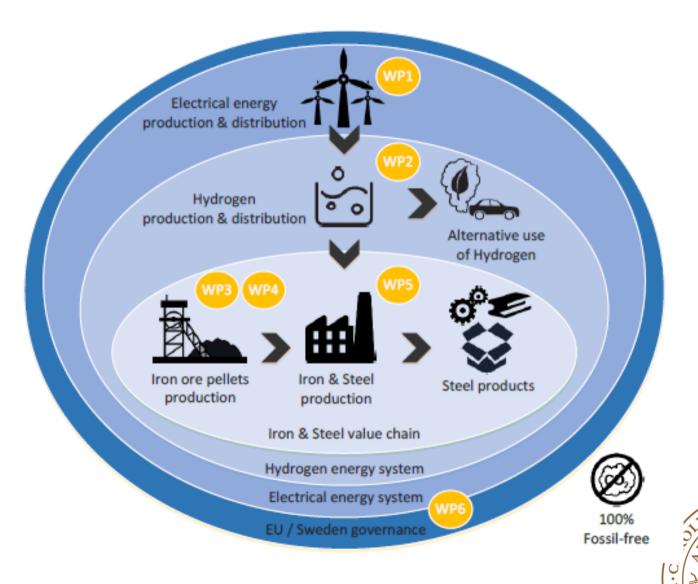
57 138.91 58 140.12 59


Ce

CERIUM

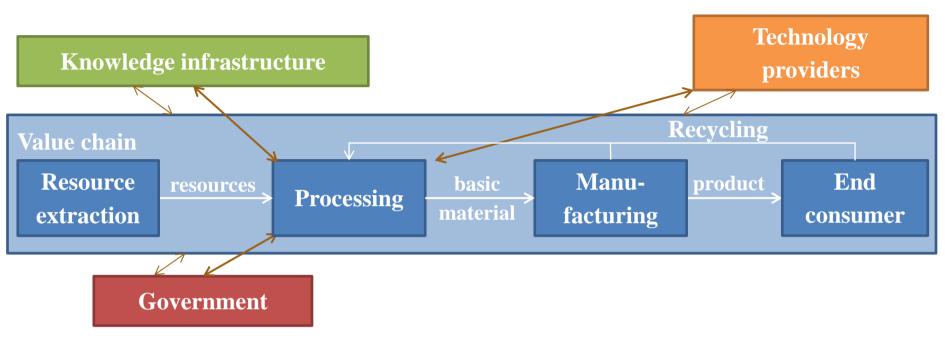
THORIUM

89 (227) 90 232.04 91 23 Ac Th P


What do we have to work with?

Energy intensive basic materials

- Metals (e.g., copper and steel), minerals (e.g., lime and silicon) and various organic compounds (e.g., cellulose fibers and plastics) in a circular economy
- Mitigation through emissions efficiency:
 - Carbon Capture and Storage
 - Biobased feedstock and fuels (biogas, charcoal, wood chips, etc.)
 - Electricity and hydrogen/hydrocarbons for fuel and feedstock
- Few, if any, co-benefits but more expensive (from 30 % for bulk steel to +300 % for plastics?)
- Potentially large electricity user (e.g., +1500 TWh in EU)


Opinion: This is how we make the steel industry fossil free

5th Conference on 6 - 7 December 2016, Maternushaus, Cologne, Carbon Dioxide as Feedstock for 2 and Polymers Germany

STEPS - Sustainable Plastics and Transition Pathways

Industry characteristics and innovation systems

- Industry structure: capital intensive, investment cycles, scale economies
- Innovation strategies: incremental process improvements, some products
- Markets: bulk commodities, cyclic, small margins (but some nichés)
- Public policy: safety, pollution, efficiency and shelter against disadvantages
- Systemic lock-in: incumbents, no markets, no push-pull, CO2-leakage

Policy and governance implications

Direction

Roadmaps, strategies, etc.

System innovation

Technology push and market pull, co-evolution with energy system

Deployment

Risk sharing and financing

Institutional capacity

Government expertise and ability to manage decarbonisation

International policy coherence

Revisit CBDR, sectoral approaches, trade

The future cannot be predicted, but futures can be invented.

D. Gabor, 1963

"It was man's ability to invent which has made human society what it is."

"Überall geht ein frühes Ahnen dem späteren Wissen voraus."

(Later knowledge is always preceded by an early instinctive idea)

Alexander von Humboldt (1769 – 1859)

